
Paths in Graphs:

Fastest Route

Michael Levin

Higher School of Economics

Graph Algorithms

Data Structures and Algorithms

https://bit.ly/graphalgorithmsclass
https://goo.gl/KAfKJT

Outline

1 Fastest Route

2 Naive Algorithm

3 Dijkstra's Algorithm

Fastest Route

What is the fastest route to get home from

work?

A

B

A

B

5

A

B

C

2

2

5

A

B

C

2

2

3

Intuition

Assume that we stay at S and observe

two outgoing edges:

S

B

C

?

?

3

5

??

?

?

?
?

?

Can we be sure that the distance from S

to C is 5?

Intuition

Assume that we stay at S and observe

two outgoing edges:

S

B

C

?

?

3

5

??

?

?

?
?

?

Can we be sure that the distance from S

to C is 5?

Intuition

Can we be sure that the distance from S

to C is 5?

S

B

C

?

?

3

5

?

?

?

??
?

?

No, because the weight of the edge

(B ,C) might be equal to, say, 1.

Intuition

Can we be sure that the distance from S

to C is 5?

S

B

C

?

?

3

5

?

?

?

??
?

?

No, because the weight of the edge

(B ,C) might be equal to, say, 1.

Intuition

Can we be sure that the distance from S

to C is 5?

S

B

C

?

?

3

5

?

?

?

?1

3

?

?

No, because the weight of the edge

(B ,C) might be equal to, say, 1.

Intuition

Can we be sure that the distance from S

to B is 3?

S

B

C

?

?

3

5

? ?

?

?

?
?

?

Yes, because there are no negative

weight edges.

Intuition

Can we be sure that the distance from S

to B is 3?

S

B

C

?

?

3

5

? ?

?

?

?
?

?

Yes, because there are no negative

weight edges.

Outline

1 Fastest Route

2 Naive Algorithm

3 Dijkstra's Algorithm

Optimal substructure

Observation

Any subpath of an optimal path is also

optimal.

Proof

Consider an optimal path from S to t and

two vertices u and v on this path. If there

were a shorter path from u to v we would

get a shorter path from S to t.

S u v t

Corollary

If S → . . .→ u → t is a shortest path from

S to t, then

d(S , t) = d(S , u) + w(u, t)

Edge relaxation

dist[v] will be an upper bound on the

actual distance from S to v .

The edge relaxation procedure for an

edge (u, v) just checks whether going

from S to v through u improves the

current value of dist[v].

Edge relaxation

dist[v] will be an upper bound on the

actual distance from S to v .

The edge relaxation procedure for an

edge (u, v) just checks whether going

from S to v through u improves the

current value of dist[v].

Relax((u, v) ∈ E)

if dist[v] > dist[u] + w(u, v):

dist[v]← dist[u] + w(u, v)

prev [v]← u

Naive approach

Naive(G , S)

for all u ∈ V :

dist[u]←∞
prev [u]← nil

dist[S]← 0

do:

relax all the edges

while at least one dist changes

Correct distances

Lemma

After the call to Naive algorithm all the

distances are set correctly.

Proof

Assume, for the sake of contradiction,

that no edge can be relaxed and there is

a vertex v such that dist[v] > d(S , v).

Consider a shortest path from S to v

and let u be the �rst vertex on this path

with the same property. Let p be the

vertex right before u.

S p u v

Proof

Assume, for the sake of contradiction,

that no edge can be relaxed and there is

a vertex v such that dist[v] > d(S , v).

Consider a shortest path from S to v

and let u be the �rst vertex on this path

with the same property. Let p be the

vertex right before u.

S p u v

Proof (continued)

S p u v

Then d(S , p) = dist[p] and hence

d(S , u) = d(S , p) + w(p, u) =

dist[p] + w(p, u)

dist[u] > d(S , u) = dist[p] + w(p, u)⇒
edge (p, u) can be relaxed �

a contradiction.

Proof (continued)

S p u v

Then d(S , p) = dist[p] and hence

d(S , u) = d(S , p) + w(p, u) =

dist[p] + w(p, u)

dist[u] > d(S , u) = dist[p] + w(p, u)⇒
edge (p, u) can be relaxed �

a contradiction.

Outline

1 Fastest Route

2 Naive Algorithm

3 Dijkstra's Algorithm

Intuition

S

0

initially, we only know the distance to S

S

0

let's relax all the edges from S

A

5

B

10

5

10

we now know the distance for A

A

5

now, let's relax all the edges from A

3

we discover an edge (A,B) of weight 3

that updates dist[B]

B

8

we also discover a few more outgoing

edges

Ñ

12

D

6

7

1

what is the next vertex for which we al-

ready know the correct distance?it is D

while for B and C it is possible that their

dist values are larger than actual dis-

tances

B

8

Ñ

12

Intuition

S

0

initially, we only know the distance to S

S

0

let's relax all the edges from S

A

5

B

10

5

10

we now know the distance for A

A

5

now, let's relax all the edges from A

3

we discover an edge (A,B) of weight 3

that updates dist[B]

B

8

we also discover a few more outgoing

edges

Ñ

12

D

6

7

1

what is the next vertex for which we al-

ready know the correct distance?it is D

while for B and C it is possible that their

dist values are larger than actual dis-

tances

B

8

Ñ

12

Intuition

S

0

initially, we only know the distance to S

S

0

let's relax all the edges from S

A

5

B

10

5

10

we now know the distance for A

A

5

now, let's relax all the edges from A

3

we discover an edge (A,B) of weight 3

that updates dist[B]

B

8

we also discover a few more outgoing

edges

Ñ

12

D

6

7

1

what is the next vertex for which we al-

ready know the correct distance?it is D

while for B and C it is possible that their

dist values are larger than actual dis-

tances

B

8

Ñ

12

Intuition

S

0

initially, we only know the distance to S

S

0

let's relax all the edges from S

A

5

B

10

5

10

we now know the distance for A

A

5

now, let's relax all the edges from A

3

we discover an edge (A,B) of weight 3

that updates dist[B]

B

8

we also discover a few more outgoing

edges

Ñ

12

D

6

7

1

what is the next vertex for which we al-

ready know the correct distance?it is D

while for B and C it is possible that their

dist values are larger than actual dis-

tances

B

8

Ñ

12

Intuition

S

0

initially, we only know the distance to S

S

0

let's relax all the edges from S

A

5

B

10

5

10

we now know the distance for A

A

5

now, let's relax all the edges from A

3

we discover an edge (A,B) of weight 3

that updates dist[B]

B

8

we also discover a few more outgoing

edges

Ñ

12

D

6

7

1

what is the next vertex for which we al-

ready know the correct distance?it is D

while for B and C it is possible that their

dist values are larger than actual dis-

tances

B

8

Ñ

12

Intuition

S

0

initially, we only know the distance to S

S

0

let's relax all the edges from S

A

5

B

10

5

10

we now know the distance for A

A

5

now, let's relax all the edges from A

3

we discover an edge (A,B) of weight 3

that updates dist[B]

B

8

we also discover a few more outgoing

edges

Ñ

12

D

6

7

1

what is the next vertex for which we al-

ready know the correct distance?it is D

while for B and C it is possible that their

dist values are larger than actual dis-

tances

B

8

Ñ

12

Intuition

S

0

initially, we only know the distance to S

S

0

let's relax all the edges from S

A

5

B

10

5

10

we now know the distance for A

A

5

now, let's relax all the edges from A

3

we discover an edge (A,B) of weight 3

that updates dist[B]

B

8

we also discover a few more outgoing

edges

Ñ

12

D

6

7

1

what is the next vertex for which we al-

ready know the correct distance?it is D

while for B and C it is possible that their

dist values are larger than actual dis-

tances

B

8

Ñ

12

Intuition

S

0

initially, we only know the distance to S

S

0

let's relax all the edges from S

A

5

B

10

5

10

we now know the distance for A

A

5

now, let's relax all the edges from A

3

we discover an edge (A,B) of weight 3

that updates dist[B]

B

8

we also discover a few more outgoing

edges

Ñ

12

D

6

7

1

what is the next vertex for which we al-

ready know the correct distance?it is D

while for B and C it is possible that their

dist values are larger than actual dis-

tances

B

8

Ñ

12

Intuition

S

0

initially, we only know the distance to S

S

0

let's relax all the edges from S

A

5

B

10

5

10

we now know the distance for A

A

5

now, let's relax all the edges from A

3

we discover an edge (A,B) of weight 3

that updates dist[B]

B

8

we also discover a few more outgoing

edges

Ñ

12

D

6

7

1

what is the next vertex for which we al-

ready know the correct distance?it is D

while for B and C it is possible that their

dist values are larger than actual dis-

tances

B

8

Ñ

12

Intuition

S

0

initially, we only know the distance to S

S

0

let's relax all the edges from S

A

5

B

10

5

10

we now know the distance for A

A

5

now, let's relax all the edges from A

3

we discover an edge (A,B) of weight 3

that updates dist[B]

B

8

we also discover a few more outgoing

edges

Ñ

12

D

6

7

1

what is the next vertex for which we al-

ready know the correct distance?it is D

while for B and C it is possible that their

dist values are larger than actual dis-

tances

B

8

Ñ

12

Intuition

S

0

initially, we only know the distance to S

S

0

let's relax all the edges from S

A

5

B

10

5

10

we now know the distance for A

A

5

now, let's relax all the edges from A

3

we discover an edge (A,B) of weight 3

that updates dist[B]

B

8

we also discover a few more outgoing

edges

Ñ

12

D

6

7

1

what is the next vertex for which we al-

ready know the correct distance?it is D

while for B and C it is possible that their

dist values are larger than actual dis-

tances

B

8

Ñ

12

Intuition

S

0

initially, we only know the distance to S

S

0

let's relax all the edges from S

A

5

B

10

5

10

we now know the distance for A

A

5

now, let's relax all the edges from A

3

we discover an edge (A,B) of weight 3

that updates dist[B]

B

8

we also discover a few more outgoing

edges

Ñ

12

D

6

7

1

what is the next vertex for which we al-

ready know the correct distance?it is D

while for B and C it is possible that their

dist values are larger than actual dis-

tances

B

8

Ñ

12

Intuition

S

0

initially, we only know the distance to S

S

0

let's relax all the edges from S

A

5

B

10

5

10

we now know the distance for A

A

5

now, let's relax all the edges from A

3

we discover an edge (A,B) of weight 3

that updates dist[B]

B

8

we also discover a few more outgoing

edges

Ñ

12

D

6

7

1

what is the next vertex for which we al-

ready know the correct distance?

it is D

while for B and C it is possible that their

dist values are larger than actual dis-

tances

B

8

Ñ

12

Intuition

S

0

initially, we only know the distance to S

S

0

let's relax all the edges from S

A

5

B

10

5

10

we now know the distance for A

A

5

now, let's relax all the edges from A

3

we discover an edge (A,B) of weight 3

that updates dist[B]

B

8

we also discover a few more outgoing

edges

Ñ

12

D

6

7

1

what is the next vertex for which we al-

ready know the correct distance?

D

6

it is D

while for B and C it is possible that their

dist values are larger than actual dis-

tances

B

8

Ñ

12

Intuition

S

0

initially, we only know the distance to S

S

0

let's relax all the edges from S

A

5

B

10

5

10

we now know the distance for A

A

5

now, let's relax all the edges from A

3

we discover an edge (A,B) of weight 3

that updates dist[B]

B

8

we also discover a few more outgoing

edges

Ñ

12

D

6

7

1

what is the next vertex for which we al-

ready know the correct distance?

D

6

it is D

while for B and C it is possible that their

dist values are larger than actual dis-

tances

B

8

Ñ

12

Main ideas of Dijkstra’s Algorithm

We maintain a set R of vertices for

which dist is already set correctly

(�known region�).

The �rst vertex added to R is S .

On each iteration we take a vertex

outside of R with the minimal

dist-value, add it to R , and relax all its

outgoing edges.

Main ideas of Dijkstra’s Algorithm

We maintain a set R of vertices for

which dist is already set correctly

(�known region�).

The �rst vertex added to R is S .

On each iteration we take a vertex

outside of R with the minimal

dist-value, add it to R , and relax all its

outgoing edges.

Main ideas of Dijkstra’s Algorithm

We maintain a set R of vertices for

which dist is already set correctly

(�known region�).

The �rst vertex added to R is S .

On each iteration we take a vertex

outside of R with the minimal

dist-value, add it to R , and relax all its

outgoing edges.

Example

0

∞ ∞

∞

∞∞

3

10

8

3

5
2

1
3

0
5

2

0

∞ ∞

∞

∞∞

Example

3

10

8

3

5
2

1
3

0
5

2

00

∞ ∞

∞

∞∞

Example

3

10

8

3

5
2

1
3

0
5

2

3
0

∞ ∞

∞

∞∞

Example

3

10

8

3

5
2

1
3

0
5

2

0

3 ∞

∞

∞∞

Example

3

10

8

3

5
2

1
3

0
5

2
10

0

3 ∞

∞

∞∞

Example

3

10

8

3

5
2

1
3

0
5

2

0

3 ∞

∞

∞10

Example

3

10

8

3

5
2

1
3

0
5

2

3

0

3 ∞

∞

∞10

Example

3

10

8

3

5
2

1
3

0
5

2

80

3 ∞

∞

∞10

Example

3

10

8

3

5
2

1
3

0
5

2

3

0

3 ∞

∞

∞10

Example

3

10

8

3

5
2

1
3

0
5

2

0

3 6

∞

∞10

Example

3

10

8

3

5
2

1
3

0
5

2

5
0

3 6

∞

∞10

Example

3

10

8

3

5
2

1
3

0
5

2

0

3 6

∞

810

Example

3

10

8

3

5
2

1
3

0
5

2

6

0

3 6

∞

810

Example

3

10

8

3

5
2

1
3

0
5

2

2

0

3 6

∞

810

Example

3

10

8

3

5
2

1
3

0
5

2

0

3 6

8

810

Example

3

10

8

3

5
2

1
3

0
5

2

10

3 6

8

810

Example

3

10

8

3

5
2

1
3

0
5

2

0

3 6

8

710

Example

3

10

8

3

5
2

1
3

0
5

2

3
0

3 6

8

710

Example

3

10

8

3

5
2

1
3

0
5

2

0

3 6

8

79

Example

3

10

8

3

5
2

1
3

0
5

2

7

0

3 6

8

79

Example

3

10

8

3

5
2

1
3

0
5

2

0

0

3 6

8

79

Example

3

10

8

3

5
2

1
3

0
5

2

0

3 6

7

79

Example

3

10

8

3

5
2

1
3

0
5

2

70

3 6

7

79

Example

3

10

8

3

5
2

1
3

0
5

2

9

0

3 6

7

79

Example

3

10

8

3

5
2

1
3

0
5

2

5

0

3 6

7

79

Example

3

10

8

3

5
2

1
3

0
5

22

0

3 6

7

79

Example

3

10

8

3

5
2

1
3

0
5

2

0

3 6

7

79

Example

3

10

8

3

5
2

1
3

0
5

2

0

3 6

7

79

Pseudocode
Dijkstra(G , S)

for all u ∈ V :

dist[u]←∞, prev[u]← nil

dist[S]← 0

H ← MakeQueue(V) {dist-values as keys}

while H is not empty:

u ← ExtractMin(H)
for all (u, v) ∈ E:
if dist[v] > dist[u] + w(u, v):

dist[v]← dist[u] + w(u, v)
prev [v]← u
ChangePriority(H , v , dist[v])

Correct distances

Lemma

When a node u is selected via ExtractMin,

dist[u] = d(S , u).

Proof

R

S

A

B

C
6

D
8

E
10

F
7

G

9

Proof

R

S

A

B

C

D
8

E
10

F
7

G

9

6

Proof

R

S

A

B

C

D
8

E
10

F
7

G

9

6

Proof

R

S

A

B

C

D
8

E
10

F
7

G

9

6

≥ 0

Proof

R

S

A

B

C

D
8

E
10

F
7

G

9

6

≥ 0

7

Running time
Total running time:

T (MakeQueue) + |V | · T (ExtractMin)

+ |E | · T (ChangePriority)

Priority queue implementations:

array:

O(|V | + |V |2 + |E |) = O(|V |2)
binary heap:

O(|V | + |V | log |V | + |E | log |V |) =
O((|V | + |E |) log |V |)

Running time
Total running time:

T (MakeQueue) + |V | · T (ExtractMin)

+ |E | · T (ChangePriority)

Priority queue implementations:

array:

O(|V | + |V |2 + |E |) = O(|V |2)

binary heap:

O(|V | + |V | log |V | + |E | log |V |) =
O((|V | + |E |) log |V |)

Running time
Total running time:

T (MakeQueue) + |V | · T (ExtractMin)

+ |E | · T (ChangePriority)

Priority queue implementations:

array:

O(|V | + |V |2 + |E |) = O(|V |2)
binary heap:

O(|V | + |V | log |V | + |E | log |V |) =
O((|V | + |E |) log |V |)

Conclusion

Can �nd the minimum time to get from

work to home

Can �nd the fastest route from work to

home

Works for any graph with non-negative

edge weights

Works in O(|V |2) or
O((|V | + |E |) log(|V |)) depending on

the implementation

	Fastest Route
	Naive Algorithm
	Dijkstra's Algorithm

